Compositionally distinct nuclear pore complexes of functionally distinct dimorphic nuclei in the ciliate Tetrahymena
نویسندگان
چکیده
The nuclear pore complex (NPC), a gateway for nucleocytoplasmic trafficking, is composed of ∼30 different proteins called nucleoporins. It remains unknown whether the NPCs within a species are homogeneous or vary depending on the cell type or physiological condition. Here, we present evidence for compositionally distinct NPCs that form within a single cell in a binucleated ciliate. In Tetrahymena thermophila, each cell contains both a transcriptionally active macronucleus (MAC) and a germline micronucleus (MIC). By combining in silico analysis, mass spectrometry analysis for immuno-isolated proteins and subcellular localization analysis of GFP-fused proteins, we identified numerous novel components of MAC and MIC NPCs. Core members of the Nup107-Nup160 scaffold complex were enriched in MIC NPCs. Strikingly, two paralogs of Nup214 and of Nup153 localized exclusively to either the MAC or MIC NPCs. Furthermore, the transmembrane components Pom121 and Pom82 localize exclusively to MAC and MIC NPCs, respectively. Our results argue that functional nuclear dimorphism in ciliates is likely to depend on the compositional and structural specificity of NPCs.
منابع مشابه
Newly found Tetrahymena nucleoporins, Nup214, Nup153 and Pom121/Pom82, differentiate nuclear pore complexes of functionally distinct nuclei
ARTICLE HISTORY Received 8 August 2017 Revised 20 September 2017 Accepted 21 September 2017 ABSTRACT The nuclear pore complex (NPC) is the sole gateway for molecular transport between the nucleus and the cytoplasm in eukaryotes. The NPC is composed of approximately 30 different kinds of protein components called nucleoporins. The functional structure of the NPC is highly conserved among various...
متن کاملTwo Distinct Repeat Sequences of Nup98 Nucleoporins Characterize Dual Nuclei in the Binucleated Ciliate Tetrahymena
Ciliated protozoa have two functionally distinct nuclei, a micronucleus (MIC) and a macronucleus (MAC) [1]. These two nuclei are distinct in size, transcriptional activity, and division cycle control, proceeding with cycles of DNA replication and nuclear division at different times within the same cell [2, 3]. The structural basis generating functionally distinct nuclei remains unknown. Here, w...
متن کاملBiased assembly of the nuclear pore complex is required for somatic and germline nuclear differentiation in Tetrahymena
Ciliates have two functionally distinct nuclei, a somatic macronucleus (MAC) and a germline micronucleus (MIC) that develop from daughter nuclei of the last postzygotic division (PZD) during the sexual process of conjugation. Understanding this nuclear dimorphism is a central issue in ciliate biology. We show, by live-cell imaging of Tetrahymena, that biased assembly of the nuclear pore complex...
متن کاملA Dynamin-Related Protein Required for Nuclear Remodeling in Tetrahymena
Dynamin-related proteins (DRPs) are GTPases that reversibly assemble on cellular membranes [1]. Individual DRPs (here "DRP" includes authentic dynamins) function in fission or tubulation of the plasma membrane, trans-Golgi network, mitochondria, peroxisomes, chloroplasts, and endosomes [1] and in mitochondrial fusion [2]. Many of these functions are widespread; they are present in animals, plan...
متن کاملCompositionally distinct nuclear pore complexes of functionally distinct dimorphic nuclei in ciliate Tetrahymena
The nuclear pore complex (NPC), a gateway for nucleocytoplasmic trafficking, is composed of about 30 different proteins called nucleoporins. It remains unknown whether the NPCs within a species are homogeneous or vary depending on the cell type, or physiological condition. Here, we present evidence for compositionally distinct NPCs that form within a single cell in a binucleated ciliate. In Tet...
متن کامل